RF-IC Trends for Wireless Embedded Sensor Networks

Svein Anders Tunheim
CTO, Chipcon
s.a.tunheim@chipcon.com
www.chipcon.com

Network Embedded Systems Technology (NEST) Retreat
Santa Cruz (CA), June 3-4, 2004
Future Perspective

Low power wireless embedded networks is a fast growing field with high volume potential.

Chipcon’s goal is to deliver chip no. 1 billion in 2011!
Applications for Wireless Networks

- Industrial control applications
- Home and building automation
 - Heating, ventilation, air-conditioning (HVAC)
 - Lighting control
 - Alarm/security
- Remote metering (water, gas, electricity)
- Agricultural
- Environmental
Characteristics

- Large number of nodes → wireless solutions are required
- Battery operated systems requires low power consumption of RF-ICs and communication protocols
- Low system cost is critical in order to enable a high volume market.
Characteristics (cont.)

- Low data rate
 - A few tens of kbps is sufficient in most cases.

- Low-complexity protocol
 - Must be able to run on an 8 bit microcontroller

- Communication distance from 0.1 – 50 m
Enablers

- Standards and open source initiatives are enablers of wireless embedded sensor networks.
 - IEEE 802.15.4
 - ZigBee
 - TinyOS

- Standard-based and open source solutions gives an additional market push due to:
 - Interoperability
 - Radios providing the same physical layer (PHY) are available from several RF-IC vendors
 - Proven robust network protocols available makes it easy to build applications
Development Trends
Trends for Stand-Alone RF-transceivers

- Use of higher integration levels to reduce cost
 - Low/zero-IF receivers
 - Direct upconversion transmitters

- Extensive use of digital signal processing in the receiver and transmitter chains

- Compensation of production tolerances of analog/RF modules by using automatic self-calibration.
Trends for Stand-Alone RF-transceivers (cont.)

- More digital hardware support included, e.g.:
 - CSMA functionality
 - Automatic polling modes
 - Packet handling
 - CRC
 - Data coding/whitening/FEC
 - Encryption
 - Address recognition

↓

- Significantly offloads the burden of the host microcontroller

↓

- Lowers the total system cost because lower-cost microcontrollers can be used
Submicron CMOS advantages

- Reduced chip area
- Reduced power consumption of the digital part

\[\Downarrow\]

- Strong incentives for implementing more functionality in the digital domain:
 - More flexibility related to system design and which functions to implement in the RF/analog/digital domains.
 - It is possible to move the analog/RF interface closer to the antenna (i.e. towards the up/down-conversion mixers)
 - Enables system-on-chip solutions
Submicron CMOS disadvantages

- Reduced supply voltage
 - More difficult to design RF/analog modules; noise level vs. dynamic range
- Leakage current increases
- Expensive mask sets
System-On-Chip (SoC)

- Using CMOS enables implementation of true single chip solutions, i.e.:

- Radio transceiver
 + Microcontroller
 + Flash memory
 + Peripheral modules
SoC Advantages

- Lower system cost
- Simpler assembly
- Simpler testing
- Increased reliability
- Less susceptibility to external stray noise pickup
- Smaller footprint
- Integrated Development Environment; the RF-transceiver becomes a peripheral unit of the microcontroller
Some Future Opportunities/Challenges

- Miniaturisation
 - MEMS:
 - Rx/Tx switches
 - Resonator to replace the crystal
 - Advanced packaging techniques
 - E.g. chip scale packaging

- Positioning/ranging

- Increased focus on secure communication
 - ZigBee/IEEE 802.15.4’s AES-128 encryption scheme is expected to become important
Conclusions

- Highly integrated radios implemented in submicron CMOS is the key for achieving low cost and low power RF-ICs

- System-on-Chip solutions will become increasingly important

- Important enablers for the wireless embedded sensor networks:
 - IEEE 802.15.4 / ZigBee
 - TinyOS

- Chipcon is interested in hearing from the TinyOS community which features/performance you would like to see in future RF-ICs / SoCs.
Contact Information

General wireless@chipcon.com

Address Chipcon AS
 Gaustadalléen 21
 NO-0349 OSLO
 NORWAY

Phone +47 22 95 85 44
Support +47 22 95 85 45
Fax +47 22 95 85 46

Web www.chipcon.com