Welcome to the UCB NEST Retreat

David Culler
Eric Brewer, David Wagner
Shankar Sastry
Newcomer note:

What retreats are about

• 6 month project checkpoint
 – milestones, accomplishments, directions, shortfalls
 – course correction

• Students refine communication and investigation skills
 – interested benign audience, lots of feedback

• In depth exchange with collaborators
 – discussion and feedback
 – close with feedback session

• Build team and cement connections

Please join my table for project background over dinner
Who are we?

• introductions...
Where are we in the project?

- 3 of 4.5 years (June 01 - Aug 05)
 - got a 1 year head start (Smart Dust, Endeavour)
 - Open Experimental Platform
 » provide platform and challenge application
 » rest of the projects provide middleware
- Delivered 1000 motes in 14 kits in Jan 02
 - mica + general microtracker
- 12 Teams demo’d at June 02
- Demo turned into applIn framework at Jan 03
- Mica => xbow Dot and Mica2
 - Spec feasibility study of OEP 3
- 250 Mote groups, 5,000 units
- Mid-Term demo partially shifted to SOCOM demos
- Mid-Term demo 7/03 ==> OEP2
- Final demo plan should be in hand
Open Experimental Platform to Catalyze a Community

TinyOS

- WeC 99 “Smart Rock”
- Rene 11/00
- Dot 9/01
- Mica 1/02

Small microcontroller
- 8 kb code,
- 512 B data

Simple, low-power radio
- 10 kb

EEPROM (32 KB)

Simple sensors
1/14/2004

Designed for experimentation
- sensor boards
- power boards

DARPA SENSIT, Expeditions

Crossbow

Demonstrate scale

NEST open exp. platform
128 KB code, 4 KB data
50 KB radio
512 KB Flash
comm accelerators

nest Retreat

- DARPA NEST
Problem: detect vehicle entering sensitive area, track using magnetics, pursue and capture by UGV.

Components
- 10x10 array of robust wireless, self-localizing sensors over 400 m² area
- Low cost, robust ‘mote’ device: magnetometer, microcontroller, radio network, ultrasonic transceiver
- Evader: human controlled Rover
- Pursuer: autonomous rover with mote, embedded PC, GPS

Operation
- Nodes inter-range (Ultrasonic) and self localize from few anchors, correct for earth mag, go into low-power ‘sentry’ state
- Detect entry and track evader
 » Local mag signal processing determines event and announces to neighbors
 » Neighborhood aggregates and estimates position
 » Network routes estimate from leader to tracker (multihop)
- Pursuer enters and navigates to intercede
 » Motes detect and estimate multiple events
 » Route to mobile Pursuer node
 » Disambiguates events to form map
 » Closed inner-loop navigation control
 » Closed information-driven pursuit control
 » Capture when within one meter
NEST PEG Architecture

- **Node Services**
 - Event-driven, power-aware operating system (TinyOS)
 - Sensing, data processing (EWMA threshold detector), RF packet comm
 - Ultrasonic ranging
 - Power control
 - Interactive configuration

- **Neighborhood Services**
 - Local Connectivity
 - Tuple-based information sharing
 - Distributed center-of-mass estimation (mag events)
 - Distributed shortest sum of distance to anchors localization

- **Network Services**
 - Distributed robust tree-build and broadcast
 » RSSI-based, density aware, low-collision
 - Multihop routing
 - Mobile-to-mobile landmark-based routing
 - In situ network programming

1/14/2004 nest Retreat
Technical Innovations & Performance

- Complex self-organized embedded network system
- Modular event-driven SW to provide concurrent high-capability within limited resources
- Application-driven network stack
- Robust mobile-to-mobile routing based on RF and density aware tree formation via landmarks.
- Adaptive neighborhood service for information sharing.
- Hierarchical info-driven closed loop control
 - Many simple nodes detect, localize and route events
 - Few powerful nodes disambiguate, map, navigate with feedback loop rate proportional to quality of event and position info.
- US/RF TofF distributed localization of sensor array
- Fraction of captures (~1)
- Time to detect & Time to capture (~ min)
- Pursuit path stretch from optimal.
- Rate of successfully delivered event detections
- Network capacity consumed per event notification (eqv. Max notification rate).
- Localization accuracy
 - Time to achieve certain faction of nodes within certain tolerance of position.
- Tolerance to link and node loss rate.
- Pursuer degradation wrt position noise and estimate delay.
- Toward final demo with multiple P&E, 1,000 node, more realistic scenario, deep performance analysis
The Larger Agenda

• Change the practice of environmental sciences, civil engineering, … (omniscope)
• Enable built environments that observe and respond to what is going on within them.
• Fundamental enhancement to manufacturing processes
• Enable information technology throughout the 3rd world

• Rethink the many levels of networked system design with a focus on constrained resources, uncertainty, and robustness despite noise and failure
Monitoring Space

Building Comfort, Smart Alarms

Great Duck Island

Vineyards BC

Sentries, UVA, OSU

Ecophysiology of Redwoods

nest Retreat
Monitoring Things

Earthquake Response, Glaser et al.

Wind Response Of Golden Gate Bridge

UCLA Factor Bldg 72 channels

Intel Research

Condition-Based Maintenance
Interactions of Space and Things

ElderCare

Sensor Augmented Fire Response

Clinical Management

Manufacturing

Asset Management

Shooter Localization - Vanderbilt, BBN

Soil Sampling
Mapping & Crop Scouting

Field Preparation
Planning

Agriculture
Solutions

Water Management

Fertilizer Application

Harvesting

Crop Protection

Planning

Cultivation

Soil Sampling
Mapping & Crop Scouting

Field Preparation
Planning

Agriculture
Solutions

Water Management

Fertilizer Application

Harvesting

Crop Protection

Planning

Cultivation

Soil Sampling
Mapping & Crop Scouting

Bullet proof defends sound with several tiny microphones (CPP)

f(x,y)
Example uses

• Env. Monitoring, Conservation biology, ...
 – *Precision agriculture, land conservation, ...*
 – *built environment comfort & efficiency ...*
 – *alarms, security, surveillance, treaty verification ...*

• Civil Engineering: structures response
 – *condition-based maintenance*
 – *disaster management*
 – *urban terrain mapping & monitoring*

• Interactive Environments
 – context aware computing, non-verbal communication
 – handicap assistance
 » *home/elder care*
 » *asset tracking*

• Integrated robotics
Resolving The Systems Challenge

Monitoring & Managing Spaces and Things

Applications

Data mgmt

Service

Network

System

Architecture

Technology

MEMS sensing

Comm

Proc

Store

uRobots actuate

Power

1/ Miniature, low-power connections to the physical world
A Day of Sensor Network Research at UCB

1/14/2004 nest Retreat

- Jan Rabaey: Ultra-low power and ultra-low cost wireless sensor nodes - an integrated perspective
- Eric Brewer: Sensor Networks in Developing Region
- Todd Dawson: Redwoods go wireless
- Michael Gastpar: Information Theory and Large Sensor Network
- Joe Hellerstein: Sensornet Tasking in the Large: Querying, Inference and Beyond
- David Culler: Distributed System Design from a Sensor Net Perspective
- Michael Jordan: Sensor networks as pattern recognition machines
- Ed Arens: Price-responsive electricity management in buildings
- Paul Wright: Industrial and Social Applications of Wireless Sensor Nets
- Greg Fenves: Monitoring the Golden Gate Bridge
- Kris Pister: Smart Dust and Micro Robots
- Pravin Varaya: Sensor Networks for Traffic Monitoring
- Jim Demmel: Mathematics of Modeling MEMS sensors
- Alice Agogino: Lighting and Medical Personalization
- Steve Glaser: Downhole sensor arrays and Firebugs
- Deirdre Mulligan: Do Sensor Networks fit with Fair Information Practices
- Pam Samuelson: Towards a Legal Framework for Sensor Networks
- Kannan Ramachandran: Distributed signal processing for sensor networks: challenges and opportunities
- Shankar Sastry: Conceptual Issues in Scaling Sensor Networks
- Michael Franklin: Sensor Net implications for Database Systems and Vice Versa
• Introduction and Overview
• Presentations on Important Developments
• Participant Demos and Posters
• Technical Working Groups (over lunch)
• Panel: Nurturing the Wireless Embedded Networking Industry
• Panel: Facilitating the TinyOS Open Source Community
• Report outs from the Working Groups
• Future Plans
2004 the year of the mote?

- Emergence of a viable IEEE std radio / mac
- Open source community pulls together
- Components ‘built to suit’ - or even integrated
- Numerous companies jumping in or forming with business plans (05-06)

- Bunch of strong PhDs

- New projects spin out
Agenda

• http://www.cs.berkeley.edu/~bmliller/NEST_agenda.html